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Overview

Beginning with TacAir-Soar, Soar Technology has 
developed a family of intelligent agent systems for 
various government applications
This talks describes a sampling of these agents, 
together with lessons learned from developing them
• Does not include all of our agent systems, particularly some 

of those covered by other talks at this workshop
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TacAir-Soar

Yes, it’s still around
Used in SAGIS system for training terminal air 
controllers
• Integrated with JSAF
• Expanding and refining behaviors for close-air support 

missions

Soar details
• Soar 7.0.4
• About 8000 productions
• “Michigan approach” to goal representation
• “Floating operators” and “persistent elaborations”

Other innovations
• Message parsing modules (see later talk)

Other notes
• Design reuse (and some code reuse) in other agent systems
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Helo-Soar

Used in Automated Wingman system for Army experimentation
• Integrated with MÄK Technologies’ VR-Forces simulator
• Providing wingman support roles for helicopter groups in air assault 

and strike missions
Used in SAGIS system for training terminal air controllers
• Integrated with JSAF
• Expanding and refining behaviors for close-air support missions

Soar details
• Soar 8.6 (with Soar Technology modifications)
• About 700 productions before close-air-support
• “Radical Randy” approach to goal representation

• I-supported goal DAG on top state
Other innovations
• Some use of TCL code-generation templates
• Voice interface using ANGST semantic parser
• Serious application of “Behavior design patterns”

• Iterator, incoming message handler, etc.
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IF-Soar

Used in SAGIS system for training terminal air controllers
• Integrated with JSAF
• Behaviors for Indirect Fire missions as part of coordinated close-air 

support missions
Soar details
• Soar 8.6 (with Soar Technology modifications)
• About 1400 productions
• “New Goal System” approach to goal representation

• Variation of “Radical Randy”
• O-supported goal DAG on top state

Other innovations
• Significant use of TCL code-generation templates
• Voice interface using ANGST semantic parser
• Serious application of “Behavior design patterns”

• Iterator, incoming message handler, etc.
• Introduction of Soar 8 into JSAF
• Extensive use of UML-like design language for agent design
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Component technologies and reuse

“Radical Randy” representation of goals
“New goal system” representation
TCL code-generation templates
ANGST semantic parser
Behavior design patterns
UML-like design language



June 2005 |   © 2005 Soar Technology, Inc.  |  Slide 7

Top-state goal representation

Allows multiple goals to be arranged in a tree, forest, or DAG
Allows simultaneous activation of multiple goals
Operators stay selected for only one decision; no operator 
subgoaling
High match costs are possible
Need knowledge for interleaving operators that attend to 
multiple parallel goals
Tradeoffs between “Radical Randy” and “New Goal System”
• I-support

• Automatic clean-up of old goals (and their subgoals)
• Takes full advantage of Soar’s reason maintenance system

• O-support
• Sometimes you want goals to persist
• Allows reasoning about past achieved and failed goals
• Can make debugging easier because goals don’t just disappear
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TCL code-generation templates

“Macros” for common patterns that appear in 
productions
Allow representation changes by changing the code-
generation rather than the source code
Templates can be general or domain-specific
Allows mixing of templates and “primitive” code

sp "explain-agent*create-subgoal*achieve-generate-situation-summary
[sub-goal-creation <glist> <supergoal>]
[is-most-derived-type <supergoal> explain-agent]
(<s> ^situation-kb.vista-situation <vs>)
(<vs> ^timestamp <time>)

-->
[create-sub-goal <glist> achieve-generate-situation-summary <supergoal>]
(<new-goal> ^vista-situation <vs>)
[create-object <new-goal> document-sections class_Collection <ds> <dstags>]"
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Expanded template

sp {explain-agent*create-subgoal*achieve-generate-situation-summary
(state <s> ^superstate nil 

^situation-kb.vista-situation <vs>
^goals <goals>)

(<goals> ^active.goal <supergoal>
^all <glist>)

(<vs> ^timestamp <time>)
(<supergoal> ^type-info.most-derived-type explain-agent)

-->
(<glist> ^goal <new-goal>)
(<new-goal> ^tags <new-tags>

^type-info <type-info-109> 
^supergoal <supergoal>
^vista-situation <vs>
^document-sections <ds>)

(<type-info-109> ^most-derived-type achieve-generate-situation-summary
^all-types <types-110>)

(<types-110> ^type achieve-generate-situation-summary
^type achievement-goal)

(<ds> ^tags <dstags>
^type-info <type-info-113>)

(<type-info-113> ^most-derived-type |class_Collection|
^all-types.type |class_Collection| +)

}
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ANGST semantic parser

Maps multiple message forms to an architecture-neutral ontological 
form
Transmits neutral representation through ATE onto agent input-link

<utt> = my name is <name>, I'm <age> and my mom's name is <mom-name>
| I'm <age>, my name is <name> and my mom's name is <mom-name>
| My mom's name is <mom-name>, I'm <age> and my name is <name>

<message>
<content>

<name>Brian</name>
<age>26</age>
<mom-name>Lynn</mom-name>

</content>
<message>

^input-link
^message

^content
^name |Brian|
^age 26
^mom-name |Lynn|
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UML-like design language
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Gold

We are still building knowledge-intensive agents
We are getting better at it
We have developed new technologies for improving and 
streamlining the design of agents
We are starting to see significant reuse across knowledge-
intensive agents
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Coal

Building these agents is still hard to do
Need to refine and improve technologies and reuse
Lots of room still for improvement
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