
Soar Agents in Government Applications

Randolph M. Jones and The Crew
(with special thanks to Glenn Taylor, Brian Stensrud,

and Mike Quist)
Soar Technology, Inc.

rjones@soartech.com

Soar Workshop, June 2005

June 2005 | © 2005 Soar Technology, Inc. | Slide 2

Overview

Beginning with TacAir-Soar, Soar Technology has
developed a family of intelligent agent systems for
various government applications
This talks describes a sampling of these agents,
together with lessons learned from developing them
• Does not include all of our agent systems, particularly some

of those covered by other talks at this workshop

June 2005 | © 2005 Soar Technology, Inc. | Slide 3

TacAir-Soar

Yes, it’s still around
Used in SAGIS system for training terminal air
controllers
• Integrated with JSAF
• Expanding and refining behaviors for close-air support

missions

Soar details
• Soar 7.0.4
• About 8000 productions
• “Michigan approach” to goal representation
• “Floating operators” and “persistent elaborations”

Other innovations
• Message parsing modules (see later talk)

Other notes
• Design reuse (and some code reuse) in other agent systems

June 2005 | © 2005 Soar Technology, Inc. | Slide 4

Helo-Soar

Used in Automated Wingman system for Army experimentation
• Integrated with MÄK Technologies’ VR-Forces simulator
• Providing wingman support roles for helicopter groups in air assault

and strike missions
Used in SAGIS system for training terminal air controllers
• Integrated with JSAF
• Expanding and refining behaviors for close-air support missions

Soar details
• Soar 8.6 (with Soar Technology modifications)
• About 700 productions before close-air-support
• “Radical Randy” approach to goal representation

• I-supported goal DAG on top state
Other innovations
• Some use of TCL code-generation templates
• Voice interface using ANGST semantic parser
• Serious application of “Behavior design patterns”

• Iterator, incoming message handler, etc.

June 2005 | © 2005 Soar Technology, Inc. | Slide 5

IF-Soar

Used in SAGIS system for training terminal air controllers
• Integrated with JSAF
• Behaviors for Indirect Fire missions as part of coordinated close-air

support missions
Soar details
• Soar 8.6 (with Soar Technology modifications)
• About 1400 productions
• “New Goal System” approach to goal representation

• Variation of “Radical Randy”
• O-supported goal DAG on top state

Other innovations
• Significant use of TCL code-generation templates
• Voice interface using ANGST semantic parser
• Serious application of “Behavior design patterns”

• Iterator, incoming message handler, etc.
• Introduction of Soar 8 into JSAF
• Extensive use of UML-like design language for agent design

June 2005 | © 2005 Soar Technology, Inc. | Slide 6

Component technologies and reuse

“Radical Randy” representation of goals
“New goal system” representation
TCL code-generation templates
ANGST semantic parser
Behavior design patterns
UML-like design language

June 2005 | © 2005 Soar Technology, Inc. | Slide 7

Top-state goal representation

Allows multiple goals to be arranged in a tree, forest, or DAG
Allows simultaneous activation of multiple goals
Operators stay selected for only one decision; no operator
subgoaling
High match costs are possible
Need knowledge for interleaving operators that attend to
multiple parallel goals
Tradeoffs between “Radical Randy” and “New Goal System”
• I-support

• Automatic clean-up of old goals (and their subgoals)
• Takes full advantage of Soar’s reason maintenance system

• O-support
• Sometimes you want goals to persist
• Allows reasoning about past achieved and failed goals
• Can make debugging easier because goals don’t just disappear

June 2005 | © 2005 Soar Technology, Inc. | Slide 8

TCL code-generation templates

“Macros” for common patterns that appear in
productions
Allow representation changes by changing the code-
generation rather than the source code
Templates can be general or domain-specific
Allows mixing of templates and “primitive” code

sp "explain-agent*create-subgoal*achieve-generate-situation-summary
[sub-goal-creation <glist> <supergoal>]
[is-most-derived-type <supergoal> explain-agent]
(<s> ^situation-kb.vista-situation <vs>)
(<vs> ^timestamp <time>)

-->
[create-sub-goal <glist> achieve-generate-situation-summary <supergoal>]
(<new-goal> ^vista-situation <vs>)
[create-object <new-goal> document-sections class_Collection <ds> <dstags>]"

June 2005 | © 2005 Soar Technology, Inc. | Slide 9

Expanded template

sp {explain-agent*create-subgoal*achieve-generate-situation-summary
(state <s> ^superstate nil

^situation-kb.vista-situation <vs>
^goals <goals>)

(<goals> ^active.goal <supergoal>
^all <glist>)

(<vs> ^timestamp <time>)
(<supergoal> ^type-info.most-derived-type explain-agent)

-->
(<glist> ^goal <new-goal>)
(<new-goal> ^tags <new-tags>

^type-info <type-info-109>
^supergoal <supergoal>
^vista-situation <vs>
^document-sections <ds>)

(<type-info-109> ^most-derived-type achieve-generate-situation-summary
^all-types <types-110>)

(<types-110> ^type achieve-generate-situation-summary
^type achievement-goal)

(<ds> ^tags <dstags>
^type-info <type-info-113>)

(<type-info-113> ^most-derived-type |class_Collection|
^all-types.type |class_Collection| +)

}

June 2005 | © 2005 Soar Technology, Inc. | Slide 10

ANGST semantic parser

Maps multiple message forms to an architecture-neutral ontological
form
Transmits neutral representation through ATE onto agent input-link

<utt> = my name is <name>, I'm <age> and my mom's name is <mom-name>
| I'm <age>, my name is <name> and my mom's name is <mom-name>
| My mom's name is <mom-name>, I'm <age> and my name is <name>

<message>
<content>

<name>Brian</name>
<age>26</age>
<mom-name>Lynn</mom-name>

</content>
<message>

^input-link
^message

^content
^name |Brian|
^age 26
^mom-name |Lynn|

June 2005 | © 2005 Soar Technology, Inc. | Slide 11

UML-like design language

June 2005 | © 2005 Soar Technology, Inc. | Slide 12

Gold

We are still building knowledge-intensive agents
We are getting better at it
We have developed new technologies for improving and
streamlining the design of agents
We are starting to see significant reuse across knowledge-
intensive agents

June 2005 | © 2005 Soar Technology, Inc. | Slide 13

Coal

Building these agents is still hard to do
Need to refine and improve technologies and reuse
Lots of room still for improvement

	Soar Agents in Government Applications
	Overview
	TacAir-Soar
	Helo-Soar
	IF-Soar
	Component technologies and reuse
	Top-state goal representation
	TCL code-generation templates
	Expanded template
	ANGST semantic parser
	UML-like design language
	Gold
	Coal

